Section 3.5: Using Newton's Laws

Tutorial 1 Practice, page 144

1. (a) Since the objects are not moving, the net force on each object is zero.
To calculate the tension F_{TA} in rope A , you can treat the two objects as one single object and ignore the tension F_{TB} in rope B since F_{TB} is an internal force in this case.

$$
\begin{aligned}
& \vec{F}_{\mathrm{TA}}=\left(m_{\mathrm{A}}+m_{\mathrm{B}}\right) \vec{g} \\
& \vec{F}_{\mathrm{TA}}=m_{\mathrm{A}} \vec{g}+m_{\mathrm{B}} \vec{g}
\end{aligned}
$$

For rope B:

$$
\vec{F}_{\mathrm{TB}}=m_{\mathrm{B}} \vec{g}
$$

So, rope A has the greater tension.
(b) Let m_{1} be the smallest mass, m_{2} the middle mass, and m_{3} the largest mass. The three masses are moving with the same acceleration a.
The only force acting on m_{3} is the tension F_{TB} in rope B .

$$
F_{\mathrm{TB}}=m_{3} a
$$

Consider the net force acting on mass m_{2}.

$$
\begin{aligned}
\vec{F}_{\mathrm{TA}}-\vec{F}_{\mathrm{TB}} & =m_{2} \vec{a} \\
\vec{F}_{\mathrm{TA}} & =m_{2} \vec{a}+\vec{F}_{\mathrm{TB}}
\end{aligned}
$$

So, rope A has the greater tension.
2. (a) The total mass m_{T} of the locomotive is

$$
\begin{aligned}
& m_{\mathrm{T}}=6.4 \times 10^{5} \mathrm{~kg}+5.0 \times 10^{5} \mathrm{~kg} \\
& m_{\mathrm{T}}=1.14 \times 10^{6} \mathrm{~kg}
\end{aligned}
$$

Choose east as positive. So, west is negative.
$\vec{F}_{\text {net }}=m_{\mathrm{T}} \vec{a}$
$F_{\text {net }}=\left(1.14 \times 10^{6} \mathrm{~kg}\right)\left(-0.12 \mathrm{~m} / \mathrm{s}^{2}\right)$
$=-1.4 \times 10^{5} \mathrm{~N}$
$\vec{F}_{\text {net }}=1.4 \times 10^{5} \mathrm{~N}[\mathrm{~W}]$
The net force on the entire train is $1.4 \times 10^{5} \mathrm{~N}$ [W].
(b) The magnitude of the tension between the locomotive and the train car equals the magnitude of the net force on the train car.
The mass m_{C} of the train car is $5.0 \times 10^{5} \mathrm{~kg}$.

$$
\begin{aligned}
F_{\text {net }} & =m_{\mathrm{C}} a \\
& =\left(5.0 \times 10^{5} \mathrm{~kg}\right)\left(0.12 \mathrm{~m} / \mathrm{s}^{2}\right) \\
F_{\text {net }} & =6.0 \times 10^{4} \mathrm{~N}
\end{aligned}
$$

The magnitude of the tension between the locomotive and the train car is $6.0 \times 10^{4} \mathrm{~N}$.

Tutorial 2 Practice, page 146

1. (a) Cart 1 and cart 2 are stuck together so they must move with the same acceleration.

$$
\begin{aligned}
m_{\mathrm{T}} & =m_{1}+m_{2} \\
& =1.2 \mathrm{~kg}+1.8 \mathrm{~kg} \\
& =3.0 \mathrm{~kg}
\end{aligned}
$$

Assume no friction on the carts.
From the FBD of both boxes, the normal force and gravity cancel each other. Choose east as positive. So, west is negative.

$$
\begin{aligned}
F_{\mathrm{net}} & =m_{\mathrm{T}} a \\
-18.9 \mathrm{~N} & =m_{\mathrm{T}} a \\
-18.9 \mathrm{~N} & =(3.0 \mathrm{~kg}) a \\
a & =\frac{-18.9 \mathrm{~N}}{3.0 \mathrm{~kg}} \\
& =-6.3 \mathrm{~m} / \mathrm{s}^{2} \\
\vec{a} & =6.3 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{~W}]
\end{aligned}
$$

The acceleration of each cart is $6.3 \mathrm{~m} / \mathrm{s}^{2}$ [W].
(b) To calculate $F_{1 \text { on } 2 \text {, draw the FBD for cart } 2 .}$ Choose east as positive. So, west is negative.

$$
\begin{aligned}
\vec{F}_{1 \text { on } 2} & =\vec{F}_{\text {net }} \\
\vec{F}_{1 \text { on } 2} & =m_{2} \vec{a} \\
F_{1 \text { on } 2} & =(1.8 \mathrm{~kg})\left(-6.3 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& =-11 \mathrm{~N} \\
\vec{F}_{1 \text { on } 2} & =11 \mathrm{~N}[\mathrm{~W}]
\end{aligned}
$$

The force that cart 1 exerts on cart 2 is 11 N [W].
(c) If cart 2 were pushed with an equal but opposite force instead of cart 1 , the net force on
the two carts would be 18.9 N [E]. The acceleration of each cart would be $6.3 \mathrm{~m} / \mathrm{s}^{2}$ [E].

To calculate $\vec{F}_{1 \text { on } 2}$, draw the FBD for cart 2 .
Choose east as positive. So, west is negative.

$$
\begin{aligned}
& \\
& \vec{F}_{\mathrm{a}}+\vec{F}_{1 \text { on } 2}=\vec{F}_{\text {net }} \\
& \vec{F}_{1 \text { on } 2} \vec{F}_{\text {net }}-\vec{F}_{\mathrm{a}} \\
& F_{1 \text { on } 2}=m_{2} a-(+18.9 \mathrm{~N}) \\
&=(1.8 \mathrm{~kg})\left(+6.3 \mathrm{~m} / \mathrm{s}^{2}\right)-18.9 \mathrm{~N} \\
&=-7.6 \mathrm{~N} \\
& \vec{F}_{1 \text { on } 2}=7.6 \mathrm{~N}[\mathrm{~W}]
\end{aligned}
$$

The force that cart 1 exerts on cart 2 would be 7.6 N [W].
2. At first, the car moves at constant velocity for 0.50 s before the driver starts to slow down.

Given: $\vec{v}=95 \mathrm{~km} / \mathrm{h}$ [forward]; $\Delta t=0.50 \mathrm{~s}$
Required: Δd_{1}
Analysis: Convert the velocity to SI units. Then use the equation $\Delta d_{1}=\vec{v} \Delta t$ to determine the
distance travelled. Choose forward as positive. So, backward is negative.

Solution:

$$
\begin{aligned}
v & =+95 \mathrm{~km} / \mathrm{h} \\
& =\left(+95 \frac{\mathrm{kmp}}{\mathrm{~h}}\right)\left(\frac{1 \mathrm{~h}}{60 \mathrm{~min}}\right)\left(\frac{1 \mathrm{~min}}{60 \mathrm{~s}}\right)\left(\frac{1000 \mathrm{~m}}{1 \mathrm{knp}}\right) \\
v & =+26.4 \mathrm{~m} / \mathrm{s} \\
\vec{v} & =26.4 \mathrm{~m} / \mathrm{s} \text { [forward] (one extra digit carried) }
\end{aligned}
$$

$$
\begin{aligned}
\Delta d_{1} & =v \Delta t \\
& =(+26.4 \mathrm{~m} / \mathrm{s})(0.5 \mathrm{~s})
\end{aligned}
$$

$\Delta d_{1}=+13.2 \mathrm{~m}$ (one extra digit carried)
Then, the car brakes with a net force of 2400 N [backward] for 2.0 s .

Given: $m=1200 \mathrm{~kg} ; \vec{F}_{\text {net }}=2400 \mathrm{~N}$ [backward];
$\Delta t=2.0 \mathrm{~s} ; \vec{v}=26.4 \mathrm{~m} / \mathrm{s}$ [forward]
Required: Δd_{2}

Analysis: First calculate the acceleration of the car using $\vec{F}_{\text {net }}=m \vec{a}$. Use $\Delta d_{2}=\vec{v} \Delta t+\frac{1}{2} \vec{a} \Delta t^{2}$ to
calculate the distance travelled. Choose forward as positive. So, backward is negative.

Solution:

$$
\begin{aligned}
& F_{\text {net }}=m a \\
&-2400 \mathrm{~N}=(1200 \mathrm{~kg}) a \\
& a=\frac{-2400 \mathrm{~N}}{1200 \mathrm{~kg}} \\
& a=-2.0 \mathrm{~m} / \mathrm{s}^{2} \\
& \Delta d_{2}=v \Delta t+\frac{1}{2} a \Delta t^{2} \\
&=(+26.4 \mathrm{~m} / \mathrm{s})(2.0 \mathrm{~s})+\frac{1}{2}\left(-2.0 \mathrm{~m} / \mathrm{s}^{2}\right)(2.0 \mathrm{~s})^{2} \\
& \Delta d_{2}=+48.8 \mathrm{~m}(\text { one extra digit carried })
\end{aligned}
$$

Total distance travelled: $13.2 \mathrm{~m}+48.8 \mathrm{~m}=62 \mathrm{~m}$ Statement: The total distance travelled by the car in 2.5 s is 62 m .

Section 3.5 Questions, page 147

1. (a) Draw a FBD of the rope.

The magnitude of the tension equals the magnitude of the applied force.
$F_{\mathrm{T}}=F_{\mathrm{a}}$
$F_{\mathrm{T}}=65 \mathrm{~N}$
The tension in the rope is 65 N .
(b) Use the same FBD of the rope in part (a). The tension in the rope is 65 N .
(c) Since there is no external force acting on the 12 kg object, the magnitude of the tension equals the magnitude of the applied force, which is 65 N . 2. (a) Given: $m_{1}=72 \mathrm{~kg} ; a=2.0 \mathrm{~m} / \mathrm{s}^{2}$ [forward]; $\vec{F}_{\mathrm{f}}=120 \mathrm{~N}$ [backward]
Required: F_{T}
Analysis: Draw a FBD for the sled. Find F_{T} by adding all horizontal forces. Choose forward as positive. So, backward is negative.

Solution:

Statement: The tension in the rope is 260 N .
(b) Given: $m_{2}=450 \mathrm{~kg} ; a=2.0 \mathrm{~m} / \mathrm{s}^{2}$ [forward]; $\vec{F}_{\mathrm{T}}=260 \mathrm{~N}$ [backward]; $\vec{F}_{\mathrm{a}}=540 \mathrm{~N}$ [backward]
Required: $\vec{F}_{2 \text { on } 1}$
Analysis: Draw a FBD for the snowmobile. Find $\vec{F}_{2 \text { on } 1}$ by adding all horizontal forces. Choose forward as positive. So, backward is negative.

Solution:

$$
\vec{F}_{\mathrm{net}}=\vec{F}_{2 \text { on } 1}+\vec{F}_{\mathrm{a}}+\vec{F}_{\mathrm{T}}
$$

$$
m_{2} a=F_{2 \text { on } 1}+(-540 \mathrm{~N})+(-260 \mathrm{~N})
$$

$(450 \mathrm{~kg})\left(+2.0 \mathrm{~m} / \mathrm{s}^{2}\right)=F_{2 \text { on } 1}-540 \mathrm{~N}-260 \mathrm{~N}$

$$
\begin{aligned}
& F_{2 \text { on } 1}=+1700 \mathrm{~N} \\
& \vec{F}_{2 \text { on } 1}=1700 \mathrm{~N} \text { [forward] }
\end{aligned}
$$

Statement: The force exerted by the snowmobile on the sled is 1700 N [forward].
3. Given: $m=70 \mathrm{~kg} ; \Delta d=15 \mathrm{~m}$;
\vec{F}_{T} (rope on person) $=35 \mathrm{~N}$ [forward]
Required: Δt
Analysis: Draw a FBD for the skater reeling in the rope. First, find the acceleration of the person using $\vec{F}_{\text {net }}=m \vec{a}$. Use $\Delta d=\vec{v} \Delta t+\frac{1}{2} \vec{a} \Delta t^{2}$ to calculate
the time it takes the two skaters to meet. Choose forward as positive. So, backward is negative.

Solution:

$$
\begin{aligned}
F_{\mathrm{net}} & =F_{\mathrm{T}} \\
m a & =+35 \mathrm{~N} \\
(70 \mathrm{~kg}) a & =+35 \mathrm{~N} \\
a & =+0.50 \mathrm{~m} / \mathrm{s}^{2} \\
\vec{a} & \left.=0.50 \mathrm{~m} / \mathrm{s}^{2} \text { [forward }\right]
\end{aligned}
$$

At the starting position, $v=0 \mathrm{~m} / \mathrm{s}$.

$$
\begin{aligned}
\Delta d & =v \Delta t+\frac{1}{2} a \Delta t^{2} \\
\Delta d & =\frac{1}{2} a \Delta t^{2} \\
\Delta t^{2} & =\frac{2 \Delta d}{a} \\
\Delta t & =\sqrt{\frac{2 \Delta d}{a}} \\
& =\sqrt{\frac{2(15 \mathrm{mr})}{0.50 \mathrm{mz} / \mathrm{s}^{2}}} \\
\Delta t & =7.7 \mathrm{~s}
\end{aligned}
$$

Statement: It takes 7.7 s for the skaters to meet.
4. (a) Given: $m_{2}=820 \mathrm{~kg}$;
$\vec{F}_{\mathrm{f}}=650 \mathrm{~N}$ [backward];
$\vec{F}_{\text {net }}=0 \mathrm{~N}$ (at constant velocity)
Required: $\vec{F}_{1 \text { on } 2}$
Analysis: Draw a FBD of the trailer with mass m_{2}. Find $\vec{F}_{1 \text { on } 2}$ by adding all horizontal forces. Choose forward as positive. So, backward is negative.

Solution:

$$
\begin{aligned}
\vec{F}_{1 \text { on } 2}+\vec{F}_{\mathrm{f}} & =0 \\
\vec{F}_{1 \text { on } 2} & =-\vec{F}_{\mathrm{f}} \\
F_{1 \text { on } 2} & =-(-650 \mathrm{~N}) \\
F_{1 \text { on } 2} & =+650 \mathrm{~N} \\
\vec{F}_{1 \text { on } 2} & =650 \mathrm{~N} \text { [forward }]
\end{aligned}
$$

Statement: The force that the car exerts on the trailer is 650 N [forward].
(b) Since the trailer is moving at constant velocity, the net force $\vec{F}_{\text {net }}$ on the trailer is 0 N .
The forces acting on the trailer are the same as in part (a). Therefore, the force that the car exerts on the trailer is 650 N [forward].
(c) Use the same FBD in part (a).

For the trailer accelerating at $1.5 \mathrm{~m} / \mathrm{s}^{2}$ [forward], $\vec{F}_{\text {net }}=m_{2} \vec{a}$. Find $\vec{F}_{1 \text { on } 2}$ by adding all horizontal forces. Choose forward as positive. So, backward is negative.

$$
\begin{aligned}
F_{1 \text { on } 2}+F_{\mathrm{f}} & =F_{\text {net }} \\
F_{1 \text { on } 2}+(-650 \mathrm{~N}) & =m_{2} a \\
F_{1 \text { on } 2}-650 \mathrm{~N} & =(820 \mathrm{~kg})\left(+1.5 \mathrm{~m} / \mathrm{s}^{2}\right) \\
F_{1 \text { on } 2} & =+1900 \mathrm{~N} \\
\vec{F}_{1 \text { on } 2} & =1900 \mathrm{~N}[\text { forward }]
\end{aligned}
$$

The force that the car exerts on the trailer is 1900 N [forward].
(d) Use the same FBD in part (a).

For the trailer accelerating at $1.2 \mathrm{~m} / \mathrm{s}^{2}$ [backward], $F_{\text {net }}=m_{2} a$. Find $F_{1 \text { on } 2}$ by adding all horizontal forces. Choose forward as positive. So, backward is negative.

$$
\begin{aligned}
F_{1 \text { on } 2}+F_{\mathrm{f}} & =F_{\text {net }} \\
F_{1 \text { on } 2}+(-650 \mathrm{~N}) & =m_{2} a \\
F_{1 \text { on } 2}-650 \mathrm{~N} & =(820 \mathrm{~kg})\left(-1.2 \mathrm{~m} / \mathrm{s}^{2}\right) \\
F_{1 \text { on } 2} & =-330 \mathrm{~N} \\
\vec{F}_{1 \text { on } 2} & =330 \mathrm{~N}[\text { backwards }]
\end{aligned}
$$

The force that the car exerts on the trailer is 330 N [backward].
5. Draw a FBD of the person climbing up the rope. Choose up as positive. So, down is negative.

Calculate the magnitude of the maximum tension in the rope.

$$
\begin{aligned}
& \vec{F}_{\mathrm{T}}=m_{\mathrm{r}} \vec{g} \\
& F_{\mathrm{T}}=(120 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& F_{\mathrm{T}}=1176 \mathrm{~N}(\text { two extra digits carried })
\end{aligned}
$$

From the FBD, the tension on the person is upward. Calculate the acceleration of the person.

$$
\begin{aligned}
F_{\mathrm{net}} & =F_{\mathrm{T}}+F_{\mathrm{g}} \\
m a & =+1176 \mathrm{~N}+m g \\
(85 \mathrm{~kg}) a & =+1176 \mathrm{~N}+(85 \mathrm{~kg})\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \\
a & =+4.04 \mathrm{~m} / \mathrm{s}^{2} \\
\vec{a} & =4.04 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{up}]
\end{aligned}
$$

Use $\Delta d=v \Delta t+\frac{1}{2} a \Delta t^{2}$ to calculate the time to
climb the entire length of the rope.
At the starting position, $v=0 \mathrm{~m} / \mathrm{s}$.

$$
\begin{aligned}
\Delta d & =v \Delta t+\frac{1}{2} a \Delta t^{2} \\
\Delta d & =\frac{1}{2} a \Delta t^{2} \\
\Delta t^{2} & =\frac{2 \Delta d}{a} \\
\Delta t & =\sqrt{\frac{2 \Delta d}{a}} \\
& =\sqrt{\frac{2(12.0 \mathrm{mr})}{4.04 \mathrm{mr} / \mathrm{s}^{2}}} \\
\Delta t & =2.4 \mathrm{~s}
\end{aligned}
$$

The minimum time required to climb the entire length of the rope is 2.4 s .
6. Let $\vec{F}_{\mathrm{T} 1}=$ tension between force sensors 1 and 2, $\vec{F}_{\mathrm{T} 2}=$ tension between force sensors 3 and 4 , and $\vec{F}_{\mathrm{T} 3}=$ tension between force sensors 5 and 6 .
(a) Consider forces on cart 1 with mass 2.2 kg . Choose forward as positive. So, backward is negative.

$$
\begin{aligned}
F_{\text {net }} & =F_{\mathrm{T} 1} \\
m_{1} a & =+3.3 \mathrm{~N} \\
(2.2 \mathrm{~kg}) a & =+3.3 \mathrm{~N} \\
a & =+1.5 \mathrm{~m} / \mathrm{s}^{2} \\
\vec{a} & =1.5 \mathrm{~m} / \mathrm{s}^{2} \text { [forward] }
\end{aligned}
$$

The acceleration of all the carts is $1.5 \mathrm{~m} / \mathrm{s}^{2}$ [forward].
(b) Use $\vec{F}_{\mathrm{T} 1}$ to calculate $\vec{F}_{\mathrm{T} 2}$. Consider forces on cart 2 with mass 2.5 kg . Choose forward as positive. So, backward is negative.

$$
\begin{aligned}
F_{\mathrm{net}} & =F_{\mathrm{T} 1}+F_{\mathrm{T} 2} \\
m_{2} a & =-3.3 \mathrm{~N}+F_{\mathrm{T} 2} \\
(2.5 \mathrm{~kg})\left(+1.5 \mathrm{~m} / \mathrm{s}^{2}\right) & =-3.3 \mathrm{~N}+F_{\mathrm{T} 2} \\
F_{\mathrm{T} 2} & =+7.1 \mathrm{~N} \\
\vec{F}_{\mathrm{T} 2} & =7.1 \mathrm{~N} \text { [forward] }
\end{aligned}
$$

Use $\vec{F}_{\mathrm{T} 2}$ to calculate $\vec{F}_{\mathrm{T} 3}$.
Consider forces on cart 3 with mass 1.8 kg .

$$
\begin{aligned}
F_{\text {net }} & =F_{\mathrm{T} 2}+F_{\mathrm{T} 3} \\
m_{3} a & =-7.1 \mathrm{~N}+F_{\mathrm{T} 3} \\
(1.8 \mathrm{~kg})\left(+1.5 \mathrm{~m} / \mathrm{s}^{2}\right) & =-7.1 \mathrm{~N}+F_{\mathrm{T} 3} \\
F_{\mathrm{T} 3} & =+9.8 \mathrm{~N} \\
\vec{F}_{\mathrm{T} 3} & =9.8 \mathrm{~N} \text { [forward }]
\end{aligned}
$$

The reading on force sensor 1 is the same as the reading on force sensor 2 , which is 3.3 N .
The reading on force sensor 2 is given as 3.3 N . The reading on force sensor 3 is 7.1 N . The reading on force sensor 4 is the same as the reading on force sensor 3 , which is 7.1 N . The reading on force sensor 5 is 9.8 N .
The reading on force sensor 6 is the same as the reading on force sensor 5 , which is 9.8 N .
(c) The total mass m_{T} of the carts is:
$m_{\mathrm{T}}=2.2 \mathrm{~kg}+2.5 \mathrm{~kg}+1.8 \mathrm{~kg}$
$m_{\mathrm{T}}=6.5 \mathrm{~kg}$

Consider forces on force sensor 6. Choose forward as positive. So, backward is negative.

$$
\begin{aligned}
F_{\mathrm{net}} & =F_{\mathrm{a}}+F_{\mathrm{T} 3} \\
m_{\mathrm{T}} a & =F_{\mathrm{a}}+(-9.8 \mathrm{~N}) \\
(6.5 \mathrm{~kg})\left(+1.5 \mathrm{~m} / \mathrm{s}^{2}\right) & =F_{\mathrm{a}}+(-9.8 \mathrm{~N}) \\
F_{\mathrm{a}} & =+20 \mathrm{~N} \\
\vec{F}_{\mathrm{a}} & =20 \mathrm{~N} \text { [forward] }
\end{aligned}
$$

The force applied to force sensor 6 is 20 N [forward].
7. The only force acting on car 2 is the tension $F_{\mathrm{T} 2}$ between car 1 and car 2 .

$$
F_{\mathrm{T} 2}=m_{2} a
$$

$F_{\mathrm{T} 1}$ is the tension between car 1 and the locomotive. Consider the net force acting on car 1 .

$$
\begin{aligned}
F_{\mathrm{T} 1}-F_{\mathrm{T} 2} & =m_{1} a \\
F_{\mathrm{T} 1} & =m_{1} a+F_{\mathrm{T} 2}
\end{aligned}
$$

So, $F_{\mathrm{T} 1}$ is always greater than $F_{\mathrm{T} 2}$.
Given: $m_{1}=5.0 \times 10^{5} \mathrm{~kg} ; m_{2}=3.6 \times 10^{5} \mathrm{~kg}$; $m=6.4 \times 10^{5} \mathrm{~kg} ; F_{\mathrm{T} 1}=2.0 \times 10^{5} \mathrm{~N}$
Required: \vec{a}
Analysis: Since car 1 and car 2 are locked together, they can be treated as one single object. Draw a FBD of this object. Use the equation $\vec{F}_{\text {net }}=m_{\mathrm{T}} \vec{a}$ to find the maximum acceleration. Choose forward as positive. So, backward is negative.

Solution: The total mass m_{T} of the two cars is:

$$
\begin{aligned}
& m_{\mathrm{T}}=5.0 \times 10^{5} \mathrm{~kg}+3.6 \times 10^{5} \mathrm{~kg} \\
&=8.6 \times 10^{6} \mathrm{~kg} \\
& F_{\text {net }}=F_{\mathrm{T} 1} \\
& m_{\mathrm{T}} a=+2.0 \times 10^{5} \mathrm{~N} \\
&\left(8.6 \times 10^{5} \mathrm{~kg}\right) a=+2.0 \times 10^{5} \mathrm{~N} \\
& a=+0.23 \mathrm{~m} / \mathrm{s}^{2} \\
& \vec{a}=0.23 \mathrm{~m} / \mathrm{s}^{2} \text { [forward] }
\end{aligned}
$$

Statement: The maximum acceleration of the train that does not break the locking mechanism is $0.23 \mathrm{~m} / \mathrm{s}^{2}$ [forward].
8. (a) Given: $m=68 \mathrm{~kg} ; F_{\text {net }}=92 \mathrm{~N} ; \Delta t_{1}=8.2 \mathrm{~s}$

Required: \vec{v}_{1}
Analysis: First find the acceleration using the equation $\vec{F}_{\text {net }}=m \vec{a}$. Use $\vec{a}=\frac{\vec{v}_{1}-\vec{v}_{i}}{\Delta t}$ to calculate \vec{v}_{1}. Choose forward as positive. So, backward is negative.

Solution:

$$
\begin{aligned}
F_{\mathrm{net}} & =m_{1} a_{1} \\
(68 \mathrm{~kg}) a_{1} & =+92 \mathrm{~N} \\
a_{1} & =+1.35 \mathrm{~m} / \mathrm{s}^{2} \text { (one extra digit carried) }
\end{aligned}
$$

Since $v_{i}=0$,

$$
\begin{aligned}
\vec{a}_{1} & =\frac{\vec{v}_{1}}{\Delta t_{1}} \\
v_{1} & =a_{1} \Delta t_{1} \\
& =\left(+1.35 \mathrm{~m} / \mathrm{s}^{2}\right)(8.2 \mathrm{~s}) \\
& =+11 \mathrm{~m} / \mathrm{s} \\
\vec{v}_{1} & =11 \mathrm{~m} / \mathrm{s} \text { [forward] }
\end{aligned}
$$

Statement: The speed of the skier is $11 \mathrm{~m} / \mathrm{s}$.
(b) Given: $m=68 \mathrm{~kg}$; $\vec{v}_{1}=11 \mathrm{~m} / \mathrm{s}$ [forward];
$\Delta t_{2}=3.5 \mathrm{~s} ; \vec{F}_{\text {net }}=22 \mathrm{~N}[$ backward $]$
Required: \vec{v}_{2}
Analysis: First find the acceleration using the
equation $\vec{F}_{\text {net }}=m \vec{a}$. Use $\vec{a}=\frac{\vec{v}_{2}-\vec{v}_{1}}{\Delta t}$ to calculate \vec{v}_{2}.
Choose forward as positive. So, backward is negative.

Solution:

$$
\begin{aligned}
F_{\text {net }} & =m_{2} a_{2} \\
(68 \mathrm{~kg}) a_{2} & =-22 \mathrm{~N} \\
a_{2} & =-0.324 \mathrm{~m} / \mathrm{s}^{2} \text { (one extra digit carried) }
\end{aligned}
$$

$$
a_{2}=\frac{v_{2}-v_{1}}{\Delta t_{2}}
$$

$$
v_{2}-v_{1}=a_{2} \Delta t_{2}
$$

$$
v_{2}-(+11 \mathrm{~m} / \mathrm{s})=\left(-0.324 \frac{\mathrm{~m}}{\mathrm{~s}^{\gamma}}\right)(3.5 \not 8)
$$

$$
v_{2}=+10 \mathrm{~m} / \mathrm{s}
$$

$$
\left.\vec{v}_{2}=10 \mathrm{~m} / \mathrm{s} \text { [forward }\right]
$$

Statement: The speed of the skier is $10 \mathrm{~m} / \mathrm{s}$.
(c) Use $\Delta d=v \Delta t+\frac{1}{2} a \Delta t^{2}$ to calculate the distance travelled. Choose forward as positive. So, backward is negative.

For part (a), at the starting position, $v=0 \mathrm{~m} / \mathrm{s}$.

$$
\begin{aligned}
\Delta d_{1} & =\frac{1}{2} a_{1} \Delta t_{1}^{2} \\
& =\frac{1}{2}\left(+1.35 \mathrm{~m} / \mathrm{s}^{2}\right)(8.2 \mathrm{~s})^{2} \\
\Delta d_{1} & =+45.4 \mathrm{~m} \text { (one extra digit carried) }
\end{aligned}
$$

For part (b), at the starting position, $v=11 \mathrm{~m} / \mathrm{s}$ [forward].

$$
\begin{aligned}
\Delta d_{2} & =v \Delta t_{2}+\frac{1}{2} a_{2} \Delta t_{2}^{2} \\
& =\left(+11 \frac{\mathrm{~m}}{\ngtr}\right)(3.5 \not x)+\frac{1}{2}\left(-0.324 \frac{\mathrm{~m}}{\ngtr}\right)(3.5 \not \wp)^{z} \\
\Delta d_{2} & =+36.5 \mathrm{~m} \text { (one extra digit carried) } \\
\Delta d & =\Delta d_{1}+\Delta d_{2} \\
& =45.4 \mathrm{~m}+36.5 \mathrm{~m} \\
& =81.9 \mathrm{~m} \\
\Delta d & =82 \mathrm{~m}
\end{aligned}
$$

Statement: The total distance travelled by the skier before coming to rest is 82 m .

